
Using Kraken for HPC Cluster 
Management

Kevin PelzelProject Mentor: Lowell Wofford

Kraken is a software tool used for automating and managing the state of a cluster. Current cluster management tools use a set-and-forget style of automation where an administrator sets the configuration for how a cluster
should look and runs some form of configuration management software to achieve the desired configuration. However, most of these current tools require human intervention when something goes wrong during its
operation. Because Kraken is reading feedback from the system, it can effectively recover a system if an error occurs during its automation process and also during a system’s general running period. Below is a general
explanation of a few of Kraken’s components including the Dashboard which was my main focus.

Overview and Motivation

Ultrascale Systems
Research Center

LA-UR-19-27129

The dashboard is a
Node.js application that
displays live updated
information about the
nodes’ current state. It
is written with React
libraries to efficiently
visualize rapid changing
data that is being pulled
from Kraken’s RestAPI.

Dashboard

Kraken modules are small add-ons that are used
to make Kraken compatible with a variety of
different system management components.
These modules communicate with Kraken by
registering mutators that allow Kraken to control
and automate nodes. By using this form of
communication modules can be run as
microservices which increases reliability and
performance.

Kraken Modules Examples:
• PowerManControl – Allows Kraken to control 

PowerMan for ipmi power control
• VBoxManage – Used for controlling power of 

virtual machines
• RestAPI – The external communication 

channel used by Kraken’s dashboard for 
reading and updating node configuration 

Kraken Modules
Kraken is an open sourced project on github and
still has future plans for development. Below are
just a few of the projects that are planned.

Future Plans
To achieve fully autonomous state management, Kraken uses a state mutation graph. This graph is generated from
various configuration parameters that describe the node state an administrator desires. Each graph node represents
a possible state of the compute node. Kraken compares the current state to the configured state and takes the most
effective path to achieving the final configured state. Below is an example of a state mutation graph for booting a
Raspberry Pi cluster.

State Mutations

Kraken’s Future Projects:
• Image layering – Kraken will be able to layer 

container images to provision a system.
• Cryptography – Communication channels 

between child nodes and parent nodes will be 
secured with x509 certificates to ensure trust 
within the cluster. Certificates will also be used 
to secure communication to the RestAPI.

• System Orchestration – A small service will sit 
on top of Kraken that will allow for easier 
management of an entire cluster (or multiple 
clusters).

• RestAPI Web Sockets – Being able to 
communicate to the RestAPI using web sockets 
can allow for more efficient communication to 
the dashboard.

The main dashboard (left figure)
features a grid of color-coded
nodes that represent a cluster
that is being automated with
Kraken. The current state of each
node is represented by the
combination of colors that make
up two corners of the square

Further information about each node can
be accessed by clicking on the squares in
the grid. This will display the node details
page (right figure) where information
such as current and configured state,
networking configuration, and running
modules can be found. There is also a
window to view a node’s state mutation
graph including its current mutation
chain (pictured under State Mutation
Graph).

This state mutation graph is featured in the
dashboard and was created by pulling live node
information from Kraken’s RestAPI.

Scientific Software Team Mentor: Alfred Torrez

- Possible mutations
- Mutation chain
- Current mutation


